6,789 research outputs found

    New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The role of epiphyseal skeletal immaturity in vascular obstruction

    Get PDF
    ObjectivesLegg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.MethodsFinite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.ResultsThe results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression.ConclusionThe findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease

    Magnetization profile for impurities in graphene nanoribbons

    Full text link
    The magnetic properties of graphene-related materials and in particular the spin-polarised edge states predicted for pristine graphene nanoribbons (GNRs) with certain edge geometries have received much attention recently due to a range of possible technological applications. However, the magnetic properties of pristine GNRs are not predicted to be particularly robust in the presence of edge disorder. In this work, we examine the magnetic properties of GNRs doped with transition-metal atoms using a combination of mean-field Hubbard and Density Functional Theory techniques. The effect of impurity location on the magnetic moment of such dopants in GNRs is investigated for the two principal GNR edge geometries - armchair and zigzag. Moment profiles are calculated across the width of the ribbon for both substitutional and adsorbed impurities and regular features are observed for zigzag-edged GNRs in particular. Unlike the case of edge-state induced magnetisation, the moments of magnetic impurities embedded in GNRs are found to be particularly stable in the presence of edge disorder. Our results suggest that the magnetic properties of transition-metal doped GNRs are far more robust than those with moments arising intrinsically due to edge geometry.Comment: submitte

    Barbary Coast : Society\u27s latest dance craze

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1391/thumbnail.jp

    Evolution of community structure in the system of global environmental governance

    Get PDF
    2011 Spring.Includes bibliographical references.Self-organization can arise in systems where actors interact in non-trivial ways and adapt their rule-sets in response to their environment. In the global system of environmental governance (GSEG), countries that interact frequently develop cultures of practice and aggregate into larger structures or communities. Network analysis provides a powerful set of tools to describe the evolution and composition of observed communities. Methods developed for bipartite networks are used to consider the behavior of countries and agreements simultaneously in the years between 1950 and 2000. Specifically, the BRIM algorithm, a bipartite adaptation of Newman's eigenvector method of community discovery, is implemented to identify the borders of densely connected international environmental communities. Our analysis of community structure provides a more precise quantification of the evolution of the international environmental system of governance noted by regime theorists

    Cranial sutures work collectively to distribute strain throughout the reptile skull

    Get PDF
    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles

    Assessments of bilateral asymmetry with application in human skull analysis

    Get PDF
    As a common feature, bilateral symmetry of biological forms is ubiquitous, but in fact rarely exact. In a setting of analytic geometry, bilateral symmetry is defined with respect to a point, line or plane, and the well-known notions of fluctuating asymmetry, directional asymmetry and antisymmetry are recast. A meticulous scheme for asymmetry assessments is proposed and explicit solutions to them are derived. An investigation into observational errors of points representing the geometric structure of an object offers a baseline reference for asymmetry assessment of the object. The proposed assessments are applicable to individual, part or all point pairs at both individual and collective levels. The exact relationship between the developed treatments and the widely used Procrustes method in asymmetry assessment is examined. An application of the proposed assessments to a large collection of human skull data in the form of 3D landmark coordinates finds: (a) asymmetry of most skulls is not fluctuating, but directional if measured about a plane fitted to shared landmarks or side landmarks for balancing; (b) asymmetry becomes completely fluctuating if one side of a skull could be slightly rotated and translated with respect to the other side; (c) female skulls are more asymmetric than male skulls. The methodology developed in this study is rigorous and transparent, and lays an analytical base for investigation of structural symmetries and asymmetries in a wide range of biological and medical applications

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte
    • …
    corecore